

Training Opportunity for Irish Trainees

Reference	Title	Duty Station
IE-2019-TEC-QEE(4)	Advanced Thermal Analysis of Space Mater	rials ESTEC
Overview of the unit's m	ission:	
The Materials' Physics ar	nd Chemistry Section is responsible for assessing a	all material w.r.t their physical and chemica
properties and property	evolution for ESA's mission. This entails a detail	led understanding of effects caused by the
environment (ground/sp	ace). The section operates a state of the art labc	pratory offering a wide selection of analysi
and characterisation inst	ruments as well as space simulation facilities to e	evaluate materials versus the effects of th
space environment (vacu	um, radiation, temperature, contamination, ATOX	, charging etc.)
Overview of the field of a	ctivity proposed:	
	gates the functional materials properties as a fur	nction of time and temperature. For that
	e commonly used within the Thermal Analysis I	
Laboratory.		
-	lecide about the possible use of materials for sp	pace in a faster manner, advanced therma
analysis techniques do ha		,
	pportunity is to apply advanced techniques like co	upled thermal techniques (a combination c
	rimetric, with in-situ mass spectrometry, in –situ	
-	ature superposition) on on-going materials investig	
	nal stability of materials (before or after space en	
used to analyse and pred	ict the long term behaviour as well as long term (s	torage) behaviour of materials in space.
	nallenge for forthcoming ESA missions like MTG and	
of already more than 15	years. The effects of such extended storage perio	ds on the performance of the materials an
processes used is not eas	y to predict and requires an advanced understand	ing of environmental effects on materials.
The aim of the activity is	to rely on advanced thermal material characteris	sation techniques (DDS, DMA, TMA, DSC) a
well as advanced microso	copic techniques (AFMs, nano-TA,) in combination	with other physical/chemical analysis (FTI
RAMAN) to derive an un	derstanding of the intrinsic mechanisms that lead	d to environmental effects and degrade th
functional properties of	materials. It shall focus on all materials classes a	nd shall work further on a recently finishe
industrial storage activitie	es over the last two years.	
The following activities a	re foreseen:	
 Definition of test p 	programme in relation to extended storage periods	s of spacecraft
 Definition of analy 	sis programme based on the above techniques	
	programme and analysis programme	
 Understanding of 	degradation mechanisms	
 Model description 	of degradation mechanisms	
	ng shall be applied to assess and verify on-going	
Specific programmes are	running in support of ESA's SCIENCE & LAUNCHER	and TELECOM missions.
Focus is that time savings	over traditional materials testing programmes sha	all be reached.
Required education:		
Applicants should have c	ompleted a University course at Masters Level (or	equivalent) in materials science, applied
	y, materials physics/chemistry.	
	ood interpersonal and communication skills and s	
-	endently and as part of a team. Hands-on experi-	ence within a laboratory environment is
considered an asset.		
	t in English and/or French, the working languages	of the Agency. A good proficiency in Englis
is required.		
Specific requirements:		
-	ding of materials analysis techniques (thermal	analyses of materials, and other relevan
	al materials characterisation.	
 ability to perform 	n experimental work in laboratory	
	e space environment	